
SPECIAL ISSUE

A study on design of object sorting algorithms in the industrial
application using hyperspectral imaging

Pavel Paclı́k Æ Raimund Leitner Æ Robert P. W. Duin

Received: 27 June 2006 / Accepted: 16 October 2006
� Springer-Verlag 2006

Abstract Many industrial object-sorting applications

leverage benefits of hyperspectral imaging technology.

Design of object sorting algorithms is a challenging

pattern recognition problem due to its multi-level

nature. Objects represented by sets of pixels/spectra

in hyperspectral images are to be allocated into pre-

specified sorting categories. Sorting categories are

often defined in terms of lower-level concepts such as

material or defect types. This paper illustrates the

design of two-stage sorting algorithms, learning to

discriminate individual pixels/spectra and fusing the

per-pixel decisions into a single per-object outcome.

The paper provides a case-study on algorithm design in

a real-world industrial sorting problem. Four groups of

algorithms are studied varying the level of prior

knowledge about the sorting problem. Apart of the

sorting accuracy, the algorithm execution speed is

estimated assuming an ideal implementation. Relating

these two performance criteria allows us to discuss the

accuracy/speed trade-off of different algorithms.

Keywords Hyperspectral imaging � Object sorting �
Algorithm design � Pattern recognition

1 Introduction

Spectral imaging has gained importance in industrial

sorting applications. Rich spectral information pro-

vided by hyperspectral sensors can capture detailed

material composition. The advantages of spectral

measurements are combined with the locality and

resolution of image data. Using various image pro-

cessing techniques, objects or defects may be localized.

The object sorting applications of spectral imaging in-

clude recycling applications (polymers [9], paper [17])

and quality control (apples [1, 8], potatoes [10],

tomatoes [16] or poultry [4, 7]).

Existing studies on object sorting usually discuss the

design of the entire sorting system, starting from the

imaging spectrometer, data calibration, and pre-pro-

cessing and finishing with the sorting algorithm and the

system evaluation. Due to complexity of the system

design, pattern recognition algorithms and their per-

formance evaluation usually receive only limited

attention. In this paper, we attempt to remedy this

situation providing the sorting community with a more

detailed analysis of several advanced sorting algo-

rithms on a real-world object sorting problem.

The contribution of this work is two-fold. Firstly, we

discuss not only the sorting accuracy of the algorithms

but also estimate their computational complexity in

execution. In addition to such estimates given in other

studies [9, 17], we visualize the relation between both

performance metrics. This allows us to discuss effects

of different design choices and provides ground for

multi-criterial selection of algorithms in sorting prob-

lems.

The second contribution of this study lays in the

systematic approach to design and evaluation of object

P. Paclı́k (&) � R. P. W. Duin
ICT Group, TU Delft, 2628 CD Delft, The Netherlands
e-mail: P.Paclik@ewi.tudelft.nl

R. P. W. Duin
e-mail: R.Duin@ieee.org

R. Leitner
CTR AG, 9524 Villach/St. Magdalen, Austria
e-mail: Raimund.Leitner@ctr.at

123

J Real-Time Image Proc

DOI 10.1007/s11554-006-0018-5

sorting algorithms. Existing studies often design clas-

sifiers at the level of pixels/spectra assuming that the

high-performance classification of pixels will result in a

high-performance object sorting [9, 10, 16, 17]. This

approach, however, neglects the influence of the nec-

essary pixel-to-object fusion step. We have shown in

[15], that a model, selected by optimizing the per-pixel

error, may yield a high per-object error due to the used

fusion rule. We therefore argue, that to meet the per-

formance estimates in production, the sorting algo-

rithms need to be designed optimizing the per-object

performance metrics.

The paper is organized as follows. In Sect. 2, we

describe the object sorting system from the pattern

recognition perspective. In Sect. 3, the studied sorting

algorithms are introduced. Section 4 discusses the

evaluation strategy for object sorting problems. The

description of the dataset used, experimental setup and

results are discussed in Sect. 5. Finally, the conclusions

are given.

2 Object sorting system

The object sorting system based on spectral imaging

receives an image stream on its input. Objects, present

in the stream, are detected and each of them is classi-

fied into one of the pre-specified sorting categories. In

this study, we assume a perfect object detector and

focus entirely on the design of the object classifier.

Surveying the real-world object sorting problems we

can observe that the sorting categories are usually de-

fined using lower-level concepts [9, 10]. For example,

in potato sorting the high-level category defected po-

tato is described by fractions (percentiles) of damage,

rot, or greening present in the object. In this study, we

follow the approach where the classifiers of the high-

level classes or lower-level concepts are trained based

on individual pixels/spectra within the objects. The per-

object decision is then performed by the fusion of

lower-level decisions [9, 15]. From a pattern recogni-

tion viewpoint, such sorting system exhibits multiple

levels, namely pixels/spectra, objects, lower-level con-

cepts (modes), and high-level categories (classes).

Formally, an object zi, i = 1,...,N is assigned into one

of the C pre-defined high-level categories (classes)

W = {x:x = 1,2,...,C}. Each category x 2 W is defined

as a collection of concepts {mj
x: j = 1,...,Mx}, where Mx

denotes the number of concepts in a category x; the

total number of concepts M =
P

x Mx. Each object zi

belongs to a single concept mi
x and thereby to a single

class x and is composed of Ki pixels/spectra repre-

sented as D-dimensional feature vectors xi 2 RD.

We assume that in a sorting problem the concepts of

high-level categories are known apriori. The sorting

algorithms may thereby leverage this prior knowledge

i.e. account for the problem multi-modality. Otherwise,

cluster analysis may be employed to define lower-level

concepts in multi-modal problems [12]. Note that we

use the term mode to describe lower-level concepts of

sorting categories. This differs from the statistical

convention where mode usually represents a unimodal

peak of the probability density function. Modes of a

sorting system such as material types may thereby ex-

hibit internal statistical multi-modality.

3 Sorting algorithms

The object sorting algorithms considered in this study

operate in two steps, namely at the pixel and object

level. During training, a pixel-level classifier of the

high-level classes is derived. For a new object to be

sorted, this trained classifier is applied to all the object

pixels and its crisp decisions are collected. The object is

then assigned to the high-level class based on the

majority vote. Because the pixel-to-object fusion rule is

fixed, only the pixel-level classifier needs to be trained.

We study four groups of the pixel-level algorithms:

– State-of-the-art algorithms published in other studies

– Dissimilarity-based algorithms

– Decomposition-based descriptors (mixtures)

– Decomposition-based discriminants.

3.1 State-of-the-art algorithms

– FLD: Fisher linear discriminant directly applied to

spectral data

– GLDB-FLD: spectra-specific feature extractor (a

top-down Generalizer Local Discriminant Bases

algorithm [5]) followed by the FLD

– PCA-QDC: Principal Component Analysis (PCA)

followed by quadratic discriminant assuming normal

densities (QDC) [9]

– PCA-3NN: PCA followed by the 3-nearest neighbor

rule [17]

– DBC-NN: nearest mean classifier using Spectral

Angle Mapper (SAM) distance [19] and mean class

spectra as prototypes [9]

The PCA accounts for 99% of data variance [2].

3.2 Dissimilarity-based approaches

Four dissimilarity-based sorting algorithms are discus-

sed varying the classification strategy and dissimilarity

J Real-Time Image Proc

123

measure. Apart of the traditionally-used nearest

neighbor classifier, also the approach based on a dis-

similarity space is used [3]. The dissimilarities to pro-

totypes are considered as new features. All the training

spectra are projected into this new space and the FLD

classifier is trained. Note that this approach leverages

correlations between dissimilarities to different proto-

types.

Two spectra-specific dissimilarity measures are em-

ployed, namely the Spectral Angle Mapper (SAM) and

a derivative-based distance computing L1-norm be-

tween smoothed Gaussian derivatives of spectra [11].

The derivative-based dissimilarity adopts the Savitzky–

Golay algorithm with a window of 11 wavelengths [14].

All algorithms use mean spectra of training objects as

prototypes and learn to directly distinguish the high-

level classes.

– SAM-NN: object prototypes, SAM, 1-NN

– SAM-FLD: object prototypes, SAM, FLD

– DerDist-NN: object prototypes, derivative dissimi-

larity, 1-NN

– DerDist-FLD: object prototypes, derivative dissimi-

larity, FLD.

3.3 Decomposition-based descriptors

The classifiers in this group describe the material types

by statistical models. Typically, the allocation of

training examples to modes is estimated using the EM

algorithm. However, in case of the multi-level sorting

problem defined in Sect. 2, the mixture model may take

advantage of the known material membership of the

training examples. Thus, we use a single component

per material type and estimate the mixture parameters

directly using the material type labels.

– MOGC: Gaussian mixture model built on original

spectra

– PCA-MOGC: PCA dimensionality reduction, fol-

lowed by MOGC

– mode-SIMCA: for each mode a separate PCA

projection and model is built. The classification is

performed based on the combination of in-model

Mahalanobis and out-of-model Euclidean distance

[18]

– LDA-MOGC: Linear Discriminant Analysis (LDA)

on data modes; MOGC in the resulting low-D

subspace.

These algorithms are chosen to illustrate a gradual

increase in supervision of data representation. Starting

a mixture model built in the original space, unsuper-

vised dimensionality reduction (PCA-MOGC), per-

mode reduction by mode-SIMCA, to the supervised

representation built by LDA-MOGC.

3.4 Decomposition-based discriminants

The algorithms in Sect. 3.3 describe the data by mod-

eling the class-conditional probability distributions.

However, building a full class descriptor requires more

statistical evidence than designing a class discriminant

because the entire data domain is modeled, not only

the separation boundary. Because the eventual goal of

object sorting is class discrimination, we proposed in

[12] to tackle the multi-modal sorting problem by a

combination of simple discriminants rather than by

data descriptors. A complex problem is first decom-

posed into two-class sub-problems involving only pairs

of concepts (modes) from different classes. Note that

this form of decomposition leverages the prior knowl-

edge on the sorting problem. For each of such (M2 –
P

x (Mx)2)/2 sub-problems a linear discriminant is

derived. All training examples are then processed by

the sub-problem discriminants, their outputs concate-

nated, re-scaled and labeled by the high-level class

labels. On this second-stage dataset the final linear

discriminant (combiner) is trained. We have illustrated

in [12] that a sigmoidal mapping of the first-stage dis-

criminants’ outputs results in a non-linear classifier.1

The advantage of this setup is the fast execution

because a non-linear classification is achieved using

inexpensive linear discriminants. Note that this scheme

resembles a two-layer neural network. The proposed

classifier is however trained deterministically in two

steps, not by an error-correction mechanism typical to

neural networks.

We employ two variants of this Decomposition-

based Multi-Modal Discriminant (DMMD) algorithm:

– DMMD: both the sub-problem discriminants and the

combiner are FLDs

– GLDB-DMMD: for each sub-problem a specific

feature representation is first derived by the GLDB

extractor [5]. The FLD is used both as the first-stage

classifier and as the combiner.

For the sake of comparison, we also include a naı̈ve

algorithm which builds discriminants between all pairs

of modes and combines their outputs by majority vot-

ing. This algorithm neglects the prior knowledge on the

sorting problem i.e. the fact that only the discrimina-

tion between materials originating from different high-

1 We adopt the sigmoidal scaling of classifier outputs used in
PRTools toolbox [2]. The sigmoid bias is fixed to zero and the
slope parameter is estimated on the training set using the max-
imum-likelihood estimator.

J Real-Time Image Proc

123

level classes is of interest. This algorithm is similar to

the Bayesian Pair-wise Classifier (BPC) proposed by

Kumar et al. [5] for general multi-class spectral classi-

fication:

– BPC: for each pair of modes a PCA projection

accounting for 95% of variance is trained and a

regularized QDC is built. The per-pixel decision on

the high-level class is made by voting over the

M(M – 1)/2 crisp classifiers’ outputs.

4 Evaluation of object sorting algorithms

In this study, we consider two performance criteria of

an object sorting algorithm related to the sorting

accuracy and the speed of algorithm execution,

respectively. Due to nature of hyperspectral imagery,

the number of pixels/spectra handled during the sorting

algorithm design may be very large (hundreds of

thousands). However, the number of respective objects

may be still limited to tens or hundreds. Because the

algorithm performance needs to be estimated on ob-

jects unseen during the training phase, object sorting

may pose a small-sample size problem. In such situa-

tion, a cross-validation procedure conducted over ob-

jects is necessary to provide realistic estimates of

sorting performance.

A set of available objects is split into ten parts by

sampling the high-level classes. In each fold, the nine

parts are used for training of the sorting algorithm. The

performance of the trained algorithm is then estimated

using the remaining tenth of objects. The process is

repeated ten times so each object appears in the testing

stage only once. Note that all the steps required for

building of a sorting algorithm such as feature-extrac-

tors and pixel classifiers are trained using the objects in

the per-fold training set.

4.1 Sorting accuracy

The eventual goal of a sorting system is accurate

allocation of new objects into the sorting categories

(classes). In order to estimate the sorting accuracy, the

mean error rate is usually adopted. This error metric,

however, depends on the prior probabilities of the

classes. In order to compare mean error rates, the class

priors should be fixed. In this study, we estimate the

mean error rate assuming the equal class priors eeq.

In reality, the class priors may shift. For example,

the fraction of defective potatoes in a sorting batch

may change based on a particular geographical loca-

tion being processed. A sorting algorithm with a high

accuracy at the equal-prior operating point may loose

performance when confronted with unbalanced priors

[6]. In order to evaluate algorithms over the range of

priors, we construct the Receiver-Operator Curve

(ROC).

4.2 Execution speed

Pattern recognition algorithms are usually developed

incrementally as the designer’s understanding of the

problem improves. The resulting implementation

prototype is thus optimized for the sake of flexibility

not execution speed. Measuring the speed of an

algorithm prototype may be, thereby, not indicative of

its true speed potential. On the other hand, maxi-

mizing the execution speed during the algorithm de-

sign phase limits the number of investigated variants.

The eventual fast solution may be very sub-optimal in

terms of sorting accuracy or robustness. Considering

this accuracy/speed trade-off, we favor the flexible

incremental design of multiple sorting algorithms

and propose to estimate their execution speed based

on a model of an ideal implementation. Ideal imple-

mentation assumes that all quantities that may be

precomputed prior the execution are indeed precom-

puted.

In this study, the execution speed is estimated by the

number of operations required for processing of a

single pixel/spectrum in a hyperspectral image. The

effect of pixel-to-object fusion by voting is neglected

because the same majority voting combiner is used for

all studied algorithms. The eventual object-sorting

speed is proportional to the number of pixels in an

average object.

5 Experiments

The dataset, used in this study, originates from the

recycling application. Hyperspectral images of objects

moving on the conveyor belt were acquired using N17

spectrograph from SpecIm, Ltd. and SU-128 InGaAs

camera from Sensors Unlimited. The data were

normalized using dark current and white background

reference images.

Two sorting categories (classes) are considered, de-

fined in terms of three or six material types (modes),

respectively. Each object is entirely composed of a

single material. The material type of each object is

known during the training phase. Table 1 provides

details on the number of objects and pixels/spectra in

each material type and class. On average, an object is

represented by 360 pixels/spectra.

J Real-Time Image Proc

123

The available set of 197 objects was randomly split

into a design set of 133 objects and the validation set

with 64 objects. Random sampling is performed for

objects of each material type separately. The validation

set thereby contains objects of each material type.

While the design set is used for incremental design and

evaluation of the discussed sorting algorithms, the

validation set was kept untouched during the design

stage. Such splitting of the data limits the number of

objects available during the algorithm design and

thereby also the achieved sorting performance. It al-

lows us, on the other hand, to validate the reliability of

the performance estimates obtained during the design

phase (Sect. 5.3).

5.1 Results on sorting accuracy

Figure 1 presents the mean ROC curves estimated by

the cross-validation procedure. In the sub-figure 1a we

can observe that the DBC-NN method, implementing a

type of a nearest mean classifier, performs worse than

the FLD-based algorithms. This class covariance-

structure apparently carries important discriminatory

information. The bare FLD classifier, applied directly

to the spectral data, provides more accurate discrimi-

nation than the FLD classifier trained on features ex-

tracted by the GLDB method. This observation

suggests that the sample size is sufficient for training a

classifier directly on wavelength features and addi-

tional dimensionality reduction step is not necessary.

There is little observable benefit of the non-linear

PCA-3NN classifier over the linear methods.

Sub-figure 1b presents the results of the dissimilar-

ity-based algorithms. FLD classifiers built in a dissim-

ilarity space (dashed lines) perform better than the

nearest-neighbor rules (solid lines). This result is in

agreement with other studies suggesting that exploiting

correlations between dissimilarities to prototypes is

better classification strategy than simple ranking of

dissimilarity values [3, 11]. The classifiers employing

the derivate-based dissimilarity are to be preferred

over the algorithms using the SAM distance. This

suggests that shapes of spectra, emphasized by the

derivative-based dissimilarity, bear additional discrim-

inatory information.

The results of decomposition-based descriptors are

given in sub-figure 1c. The Gaussian mixture model

built directly in the 128-dimensional feature space of

wavelengths appears to perform significantly better

than algorithms employing unsupervised (PCA-

MOGC, circular markers) or per-mode (modal-SIM-

CA, square markers) dimensionality reduction. The

PCA dimensionality reduction probably recovers

directions preserving the overall data variance but

unrelated to the class discrimination. The mode-SIM-

CA algorithm may also suffer from the choice of the

proper distance measure combining the contribution of

the in-model and out-of-model distances, as observed

in [13]. On the other hand, the supervised dimension-

ality reduction by LDA on modes (LDA-MOGC)

improves over the result of the MOGC algorithm. It is

clearly beneficial to derive the low-dimensional (8D)

feature space informative for mode and thereby also

class separation. The LDA-MOGC yields the highest

sorting accuracy of all investigated algorithms.

The decomposition-based discriminants are pre-

sented in sub-figure 1d. The BPC method (dashed line)

slightly outperforms the two DMMD approaches. The

DMMD classifier applying the FLD classifiers directly

to spectral wavelengths provides better solution

than the GLDB-DMMD algorithm employing the

sub-problem GLDB extractors. However, these per-

formance differences are not significant, as we can

observe in Fig. 2 (the ROC plots in Fig. 1 omit the

error bars for the sake of clarity).

5.2 Relation between sorting error and execution

speed

In Fig. 2 we visualize the relation between the equal-

prior classification error of sorting algorithms and their

predicted execution speed in terms of number of

operations (plotted on a logarithmic scale). In case of

classification errors, the means and standard deviations

of the means over the ten fold cross-validation folds

are provided. For the number of operations, minimum

and maximum values are given.

The group of state-of-the-art methods exhibits fast

execution due to dimensionality reduction algorithms

involved (GLDB, PCA or FLD). The only exception is

the PCA-3NN algorithm, slowed down by the compu-

tation of dissimilarities to the 1000 prototype objects.

None of the algorithms, however, reaches the equal-

prior error lower than 15%.

Table 1 Number of objects and spectra for each of the material
types and class of the design dataset

Class Material type No. of objects No. of spectra

1 a 18 7,175
1 b 58 21,055
1 c 16 4,078
2 d 4 1,597
2 e 6 2,170
2 f 5 2,648
2 g 8 1,762
2 h 12 5,442
2 i 6 2,794

J Real-Time Image Proc

123

The accuracy improvement of classifiers built in a

dissimilarity-space (SAM-FLD and DerDist-FLD)

over the nearest neighbor rules (SAM-NN and Der-

Dist-NN) does not result in a significantly slower exe-

cution. Because the same set of prototypes is used, the

marginal slow-down is only due to the use of a

weighted sum instead of the minimum operation on the

same set of dissimilarity values [11]. Using the identical

prototype sets, the derivative-based dissimilarity yields

a more informative data representation than the SAM

measure. It is, however, more than five times slower in

execution. Note that our execution model assumes

sequential implementation. By parallelizing the dis-

similarity computations, the speed of algorithms could

be significantly increased.

The full mixture of Gaussians built in the original

space of spectral wavelengths (MOGC) provides an

accurate but slow classifier. The dimensionality

reduction using PCA on the entire dataset (PCA-

MOGC), or on the modes (mode-SIMCA), does in-

crease the execution speed but results in the loss of

accuracy. The supervised feature extraction using LDA

on the modes, followed by a mixture model (LDA-

MOGC) yields the best accuracy/speed trade-off. It is

apparently beneficial to use the supervision and prior

knowledge on the sorting problem (mode labels) for

the derivation of a data representation. The extracted

8-dimensional space (LDA projection using nine

modes as classes) allows for construction of a fast non-

linear classifier.

The decomposition-based discriminants provide

overall high-accuracy solutions. The BPC classifier

exhibits large speed variability. The PCA projections

computed for all the 36 mode pairs by fixing the 95% of

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

error on class 1

er
ro

r
on

 c
la

ss
 2

FLD
GLDB–FLD
PCA–3NN
DBC–NN

(a) State-of-the-art algorithms

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

error on class 1

er
ro

r
on

 c
la

ss
 2

SAM–NN
SAM–FLD
DerDist–NN
DerDist–FLD

(b) Dissimilarity algorithms

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

error on class 1

er
ro

r
on

 c
la

ss
 2

MOGC
PCA–MOGC
mode–SIMCA
LDA–MOGC

(c) Decomposition-based descriptors

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

error on class 1

er
ro

r
on

 c
la

ss
 2

DMMD
GLDB–DMMD
BPC

(d) Decomposition-based discriminants

Fig. 1 Mean ROC curves for the four algorithm groups

J Real-Time Image Proc

123

preserved variance result in output dimensionalities

varying from 3 to 45 dimensions where quadratic dis-

criminants are built. While the DMMD classifier

reaches similar classification error of 5%, it is based on

computationally-cheap linear discriminants and derives

the needed non-linear solution using sigmoids with

only a single parameter for each of the 18 sub-prob-

lems. This makes it an order of magnitude faster than

BPC. Deriving specific GLDB features for each

sub-problem does increase the speed further but also

lowers the classification accuracy.

5.3 The performance on the independent validation

set

Complex sorting algorithms are usually developed

incrementally using a design set of objects. The appli-

cation-specific problems such as multi-modality or

required level of non-linearity are understood by the

designer based on of algorithms’ performances esti-

mated on the design set. Based on this knowledge,

more advanced architectures are introduced. Such

incremental algorithm development inevitably results

in overtraining, i.e. in over-emphasizing the structure

of the design set which is not necessarily repeated in

the object sets met later on during production.

In this section, we use an entirely independent set of

objects to assess the performance differences with re-

spect to the expected error rates predicted during the

design stage by the cross-validation procedure. Each of

the studied algorithms was re-trained using the entire

design set and executed on the validation set of objects.

The results are presented in Fig. 2 by red cross mark-

ers. Note that although these results illustrate a real-

istic performance snapshot which may be observed in

production, they lack any statistical significance.

It is interesting to compare the validation perfor-

mances of related types of algorithms. For example,

while the validation-set error rate of the bare FLD

algorithm falls within the error bar predicted on the

design set, the error rate of the GLDB-FLD algorithm

does not. We can observe the similar effect between

the LDA-MOGC algorithm which is preceded by a

feature extractor and the MOGC classifier which is not.

This could suggest that an additional feature-extraction

step may reduce the algorithm robustness by empha-

sizing directions which are not informative for the class

separation in case of the validation-set objects.

However, all the three decomposition-based discri-

minants predict the validation-set performance very

well including the GLDB-DMMD algorithm which

does employ an extra feature extraction in each of

the sub-problems. Although the existing evidence is

not sufficient to draw generalizing conclusions, we

hypothesize that the decomposition-based discrimi-

nants may exhibit more robustness due to their multi-

stage nature. Contrary to the LDA-MOGC algorithm

sequentially extracting features and performing a non-

linear classification, the DMMD and BPC algorithms

combine the simpler sub-problem decisions into the

single per-pixel decision. The combiner might be

increasing the algorithm robustness.

The overall conclusion we draw from this experi-

ment is that the design set of objects is apparently not

well representative of the validation set. Some algo-

rithms are severely affected by this discrepancy. In

order to understand the reasons for the unexpectedly

large validation-set error, a larger scale study is needed

including multiple validation sets.

6 Conclusions

This paper discusses the design of pattern recognition

algorithms for object sorting based on hyperspectral

imaging. The design of object sorting systems is com-

plicated by the presence of multiple levels such as

pixels/spectra, objects, material types and sorting

categories.

Sixteen algorithms, compared on a real-world

industrial sorting problem, vary the amount of avail-

able prior knowledge, such as the existence of lower-

level concepts or definition of sorting categories in

terms of these concepts.

10
2

10
3

10
4

10
5

10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

FLD

GLDB–FLD

PCA–3NN

DBC–NN

SAM–NN

SAM–FLD

DerDist–NN

DerDist–FLD

MOGC

PCA–MOGC

mode–SIMCA

LDA–MOGC

DMMD

GLDB–DMMD

BPC

number of operations

eq
ua

lp
rio

r
er

ro
r

ra
te

Fig. 2 The relation between equal-prior sorting error and the
estimated per-pixel execution speed. The error boxes refer to
results of cross-validation on the design set. The cross markers
denote the results obtained by training the classifier of the full
design set and estimating its performance on the entirely
independent set of validation objects

J Real-Time Image Proc

123

Simple classifiers learning the high-level classes by

classical combination of PCA dimensionality reduction

followed by a classifier provide fast but high-error

solutions. The dissimilarity algorithms may reach high-

accuracy sorting but are expensive in execution due to

large number of prototypes involved. Sorting accuracy

may be significantly improved by exchanging the

nearest neighbor rule with a classifier trained in a

similarity space. Execution complexity of dissimilarity-

based classifiers could be reduced by parallelization of

dissimilarity evaluations.

Two types of algorithms employing decomposition

of the sorting problem were considered, namely the

descriptors and discriminants. While the descriptors

attempt to model the lower-level concepts, the discri-

minant merely learn to distinguish between them. The

Gaussian mixture trained on the original spectra (our

basic data descriptor) provides high sorting accuracy,

but is very slow in execution due to high dimension-

ality. The best accuracy/speed trade-offs are reached

by a mixture trained in a low-dimensional feature

space extracted using the prior knowledge on material-

types (LDA-MOGC) and by the ensemble of sub-

problem specific linear discriminants (DMMD).

Finally, an independent set of objects was used to

compare the performance predicted during the algo-

rithm design with that observed in a realistic produc-

tion situation. The results suggest that some algorithms

(DMMD, BPC, MOGC, SAM-FLD) might be more

robust to such unseen configuration of objects than

others (LDA-MOGC, DerDist-FLD). Statistical

assessment of algorithm robustness to varying object

configuration and understanding of reasons of this

variation is of great importance for sorting system

design and will become a topic of our future research.

Acknowledgments The authors would like to thank Sergey
Verzakov and Carmen Lai for fruitful comments on the manu-
script. This research is/was supported by the Technology Foun-
dation STW, applied science division of NWO and the
technology program of the Ministry of Economic Affairs.

References

1. Cheng, X.: Hyperspectral imaging and pattern recognition
technologies for real time fruit safety and quality inspection.
Ph.D. thesis, University of Maryland (2004)

2. Duin, R.P.W., Juszczak, P., de Ridder, D., Paclı́k, P.,
Pekalska, E., Tax, D.M.J.: PR-Tools 4.0, a Matlab toolbox
for pattern recognition. Tech. rep., ICT Group, TU Delft,
The Netherlands (2004) http://www.prtools.org

3. Duin, R.P.W., de Ridder, D., Tax, D.M.J.: Experiments with
object based discriminant functions; a featureless approach
to pattern recognition. Pattern Recognit. Lett. 18(11–13),
1159–1166 (1997)

4. Kong, S., Chen, Y., Kim, I., Kim, M.: Analysis of hyper-
spectral fluorescence images for poultry skin tumor inspec-
tion. Appl. Opt. 43(4), 824–833 (2004)

5. Kumar, S., Gosh, J., Crawford, M.M.: Best-bases feature
extraction algorithm for classification of hyperspectral
data. IEEE Trans Geosci Remote Sens., 39(7), 1368–1379
(2001)

6. Landgrebe, T., Paclı́k, P., Tax, D., Verzakov, S., Duin, R.:
Cost-based classifier evaluation for imbalanced problems. In:
Fred, A., Caelli, T., Duin, R., Campilho, A., de Ridder, D.
(eds.) Structural, Syntactic, and Statistical Pattern Recogni-
tion, Proc. SSSPR2004 (Lisbon, Portugal, August 2004),
LNCS, vol. 3138, pp. 762–770. Springer, Berlin Heidelberg
New York (2004)

7. Lawrence, K., Windham, W., Park, B.R.J.B.: Hyperspectral
imaging for poultry contaminant detection. NIR News 12(5)
(2001)

8. Leemans, V., Destain, M.: A real-time grading method of
apples based on features extracted from defects. J. Food
Eng. 61, 83–89 (2004)

9. Leitner, R., Mairer, H., Kercek, A.: Real-time classification
of polymers with nir spectral imaging and blob analysis.
Real-Time Imaging 9(4), 245–251 (2003)

10. Noordam, J.: Chemometrics in multispectral imaging for
quality inspection of postharvest products. Ph.D. thesis,
Radboud University Nijmegen (2005)

11. Paclı́k, P., Duin, R.P.W.: Dissimilarity-based classification of
spectra: computational issues. Real-Time Imaging 9(4), 237–
244 (2003)

12. Paclı́k, P., Duin, R.P.W.: Designing multi-modal classifiers of
spectra: a study on industrial sorting application. In: accepted
for the 2nd Spectral Imaging workshop, Villach, Austria
(2005)

13. Paclı́k, P., Tax, D., Verzakov, S., Duin, R.: Simplifying the
model-based classifiers for multi-modal problems in classifi-
cation of spectra. In: Nicolls, F. (eds.) Proc.of the Sixteenth
Annual Symposium of the Pattern Recognition Association
of South Africa, pp. 33–38. PRASA, Cape Town, RSA
(2005). Langebaan, South Africa

14. Paclı́k, P., Verzakov, S., Duin, R.P.W.: Hypertools: the
toolbox for spectral image analysis. Tech. rep., Pattern
Recognition Group, TU Delft, The Netherlands (2003)

15. Paclı́k, P., Verzakov, S., Duin, R.P.W.: Improving the max-
imum-likelihood co-occurrence classifier: a study on classifi-
cation of inhomogeneous rock images. In: Kalviainen,
A.K.H., Parkinen, J., (eds.) Image Analysis—SCIA 2005
(Proc. 14th Scandinavian Conf. Joensuu, Finland, June 19–
July 22), Lecture Notes in Computer Science, vol. 3540, pp.
998–1008. Springer, Berlin Heidelberg New York (2005)

16. Polder, G., van der Heijden, G., Young, I.: Tomato sorting
using independent component analysis on specral images.
Real-Time Imaging 9(4), 253–259 (2003)

17. Tatzer, P., Wolf, M., Panner, T.: Industrial application for
inline material sorting using hyperspectral imaging in the nir
range. Real-Time Imaging 11, 99–107 (2005)

18. Wold, S., Sjostrom, M.: SIMCA: a method for analysing
chemical data in terms of similarity and analogy. ACS Symp.
Series 52 (1977)

19. Yuhas, R.H., Goetz, A.F.H., Boardman, J.W.: Discrimina-
tion among semiarid landscape endmembers using the
spectral angle mapper (SAM) algorithm. In: Summaries of
the Third Annual JPL Airborne Geoscience Workshop, pp.
147–149. Jet Propulsion Laboratory, Pasadena, CA (1992)

J Real-Time Image Proc

123

	A study on design of object sorting algorithms in the industrial application using hyperspectral imaging
	Abstract
	Introduction
	Object sorting system
	Sorting algorithms
	State-of-the-art algorithms
	Dissimilarity-based approaches
	Decomposition-based descriptors
	Decomposition-based discriminants

	Evaluation of object sorting algorithms
	Sorting accuracy
	Execution speed

	Experiments
	Results on sorting accuracy
	Relation between sorting error and execution speed
	The performance on the independent validation set

	Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

